触屏版
[登陆] 免费注册 服务电话:13910353821
当前位置:首页 > 精品案例
电站锅炉事故案例、原因分析及预防
0
发布时间:2019-02-27 浏览数:274 新闻来源:安全管理网

       我国电站锅炉占锅炉总数量的比例不高,但电站锅炉都是大型锅炉,压力高,功率大,一旦发生事故,容易造成群死群伤。近年来,电站锅炉重大以上事故较少,但一般事故不断。据统计表明,100MW及以上机组非计划停用所造成的电量损失中,锅炉机组故障停用损失占60%~65%,1995年100MW及以上锅炉及其主要辅机故障停用损失电量近120亿kwh。故障停用造成的启停损失(启动用燃料、电、汽、水)若每次以3万元计,仅此一项全国每年直接经济损失就达2400万元。与此同时每次启停,锅炉承压部件必然发生一次温度交变导致一次寿命损耗,其中直流锅炉水冷壁与分离器可能发生几百度温度的变化,从而诱发疲劳破坏,造成设备的损坏。

       通过分析,造成电站锅炉事故发生的原因很多,下面主要介绍常见的三种:

一、承重部件损坏造成的事故

      锅炉承重部件基本可以分成三类:一是受拉部件,如吊杆;二是受压部件,如钢柱、支承杆;三是受弯部件,如梁。他们都具有突发性损坏的特点,如吊杆断裂、压杆失稳和桁架失稳。所谓失稳或翘曲失效是指作用在支撑杆、支柱上的压力达到某一临界水平时,它们有时会突然发生例如弓起、褶皱、弯曲等几何形状上的剧烈变化。这时从强度观点,作用力产生的应力完全在设计范围内,但剧烈的几何变形而引起的大挠度可能破坏结构的平衡,形成不稳定的构形,使其突然崩溃,即通常所谓的失稳或翘曲失效。而吊杆的断裂因为常发生在具有应力集中特征的螺扣处,现在使用的锅炉多为悬吊式锅炉,此类锅炉由于锅炉受热面、汽水联箱、管道、烟风煤粉管道都通过支吊架、梁、桁架,由钢柱承重;并以膨胀中心为零点,向下,向四周膨胀。一旦承重系统失效,部件脱落,部件的几何形状即发生变化,同样可以导致锅炉部件失效。理论计算表明,一根细长的受热管可以承受很高的内压,但却不能承受一般的轴向压力,更不能承受侧向弯曲力的作用,否则将产生变形失效,导致事故发生。

(一)事故案例及分析

     案例1  1988年4月某热电厂一台220t/h锅炉,由于炉膛内聚集的可燃气体爆炸,锅炉钢架不能承受爆炸引起的侧向作用力,炉后钢柱扭曲、断裂,炉顶大板梁失去支承点,向下向右塌落。锅炉省煤器、过热器、水冷壁随之掉落并发生弯曲变形,回转式空气预热器被压下沉,导致整台锅炉报废。

     案例2  1994年3月某热电厂的一台220t/h锅炉,由于锅炉房起火,锅炉钢柱遇热屈服强度下降发生弯曲变形,致炉整体后倾lO°,后移5.3m,汽包下沉2m,所有受热面下坍弯曲变形,锅炉报废。

     案例3  1993年3月某厂一台2008t/h锅炉,由于大量堆集以及可能存在的塌焦、炉压突升等冲击力,使支撑该炉冷灰斗的钢结构失稳,组成冷灰斗的水冷壁管严重变形,锅炉停用。

(二)事故预防

     防止承重部件损坏,应从防止超载及维持支、吊件承载能力两方面着手。当前应注意以下问题:

    (1)锅炉钢结构的工作温度。美国锅炉规范规定承重构件受热后温度不得大于315℃,这是因为钢材的屈服强度因温度上升而急剧下降。《建筑设计防火规范》中规定无保护层的钢柱、钢架、钢层架耐火极限只有15分钟,说是说在大火中钢结构很快变形失效。为此要求:

    ①锅炉油管路,电缆的铺设要离开承重部件;

    ②一旦发生火灾要组织力量控制承重部件的温度,此时立柱和大梁的冷却至关重要。

    (2)要避免炉膛严重堆焦、转向室灰斗存灰、风道积灰与烟道存水等超载现象。

    (3)锅炉刚性梁的作用是承受一定的炉膛爆炸力,其薄弱环节是角部绞接结构。在设计抗爆压力下,刚性梁的挠度f=1/500。有怀疑时,应通过测试,确定是否需要加固。

    (4)吊杆的安全性取决于力的分配及坡屋内吊杆高温部位的强度是否满足要求,最好使用有承力指示的吊架。个别吊杆弹簧压死或不承力都是不正常的现象,要作为锅炉定期检验内容加以确认调整。

    (5)现代锅炉普遍采用全密封膜式炉壁,并确立膨胀中心,为此在锅炉周围、上下设许多向构件,保证以膨胀中心为零点,向一定方向膨胀。凡是没有按设计值胀出的,必然存在残余应力,将影响支吊架安全,务必要究其原因,以防意外。

(6)要弄清锅炉承重部件的设计意图,哪些是受拉杆件,哪些是受压杆件,哪些接合部位要留间隙,哪些部件是要焊牢的。在检验过程中严格贯彻设计意图,维持结构承重功能。

二、爆炸造成的事故

      可燃气体或粉尘与空气形成的混合物在短时间内发生化学反应,产生的高温、高压气体与冲击波,超过周围建筑物、容器、管道的承载能力,使其发生破坏,导致人身伤亡、设备损坏,称为爆炸事故。通常说,发生爆炸要有三个条件,一是有燃料和助燃空气的积存:二是燃料和空气的混合物的浓度在爆炸极限内;三是有足够的点火能源。天然气的爆炸下限约为5%,煤粉的爆炸下限是20~60g/m3,爆炸产生的压力可达0.3~1.OMPa。就锅炉范围而言,可燃物质是指天然气、煤气、石油气、油雾和煤粉;构成爆炸事故的有炉膛爆炸、煤粉仓爆炸及制粉系统爆炸。

(一)事故案例及分析

     案例1  1993年3月10日,宁波市北仑港发电厂1号机组锅炉发生炉膛爆炸特大事故,造成死亡23人,重伤8人,伤16人。该机组停运132天,少发电近14亿度,直接经济损失778万元。因该炉事故造成的供电紧张,致使一段时间内宁波地区的企业实行停三开四,杭州地区停二开五,浙江省经济受到了严重影响,间接损失严重。

     事故后对现场设备损坏情况检查后发现:21米层以下损坏情况自上而下趋于严重,冷灰斗向炉后侧例呈开放性破口,侧墙与冷灰斗交界处撕裂水冷壁管31根。立柱不同程度扭曲,刚性梁拉裂;水冷壁管严重损坏,有66根开断,炉右侧2l米层以下刚性梁严重变形,零米层炉后侧基本被热焦堵至冷灰斗,三台碎渣机及喷射水泵等全部埋没在内。炉前侧设备情况尚好,磨煤机、风机、烟道基本无损坏。事故后,清除的灰渣934立方米。

     该事故为典型的炉膛爆炸型特大事故,在此特别加以分析。

     北仑港发电厂1号锅炉是美国燃烧工程公司生产的亚临界一次再热强制循环汽包锅炉,额定主蒸汽压力17.3MPa,主蒸汽温度540℃,再热蒸汽温度540℃,主蒸汽流量2008t/h。1993年3月6日起该锅炉运行情况出现异常,为降低再热器管壁温度,喷燃器角度由水平改为下摆至下限。3月9日后锅炉运行工况逐渐恶化。3月10日,事故发生时,集中控制室值班人员听到一声闷响,集中控制室备用控制盘上发出声光报警:“炉膛压力‘高高”’、“MFT” (主燃料切断保护)、“汽机跳闸”、“旁路快开”等光字牌亮。FSS(炉膛安全系统)盘显示 MFT的原因是“炉膛压力‘高高’”引起,逆功率保护使发电机出口开关跳开,厂用电备用电源自投成功,电动给水泵自启动成功。由于汽包水位急剧下降,运行人员手动紧急停运炉水循环泵B、C(此时A泵已自动跳闸)。就地检查,发现整个锅炉房迷漫着烟、灰、汽雾,人员根本无法进入,同时发现主汽压急骤下降,即手动停运电动给水泵。由于锅炉部分PLC (可编程逻辑控制)柜通讯中断,引起CRT(计算机显示屏)画面锅炉侧所有辅助设备的状态失去,无法控制操作,运行人员立即就地紧急停运两组送引风机。经戴防毒面具人员进入现场附近,发现炉底冷灰斗严重损坏,呈开放性破口。

     经分析,事故原因是多方面的,现将事故调查过程中的事故机理技术分析结论综合如下:

     l、锅炉冷灰斗结构薄弱,弹性计算确认,事故前冷灰斗中积存的渣量,在静载荷下还不会造成冷灰斗破坏,但静载荷上施加一定数量的集中载荷或者施加一定数量的压力,有可能造成灰斗失稳破坏。

     2、事故发生后的检验结果表明,锅炉所用的水冷壁管材符合技术规范的要求,对水冷壁管断口样品的失效分析证实,包角管的破裂是由于冷灰斗破坏后塌落导致包角管受过大拉伸力而造成的。

     3、对于事故的触发原因是锅炉严重结渣。事故的主要过程是:严重结渣造成的静载加上随机落渣造成的动载,致使冷灰斗局部失稳;落渣入水产生的水汽,进入炉膛,在高温堆渣的加热下升温、膨胀,使炉膛压力上升;落渣振动造成继续落渣使冷灰斗失稳扩大,冷灰斗局部塌陷,侧墙与冷灰斗连接处的水冷壁管撕裂;裂口向炉内喷出的水、汽与落渣入水产生的水汽,升温膨胀使炉膛压力大增,造成主燃料切断,并使冷灰斗塌陷扩展;三只角隅包角管先后断裂,喷出的工作介质量大增,炉膛压力陡升,在渣的静载、动载和工质瞬间扩容压力的共同作用下,造成锅炉21米以下严重破坏和现场人员重大伤亡。

     4、锅炉投入运行后,在燃用设计煤种及其允许变动范围内煤质时出现前述的严重结渣和再热汽温低、局部管段管壁超温问题,与制造厂锅炉炉膛的结构设计和布置等不完善有直接关系,是造成这次事故的根本原因。

     5、北仑电厂及有关单位在管理上存在的一些问题,也是导致这起事故发生的原因。

     最终,事故调查处理小组确定的事故原因为:制造厂锅炉炉膛设计、布置不完善及运行指挥失当是事故的根本原因;锅炉严重结渣是事故的直接原因。

(二)事故预防

     1、炉膛爆炸事故预防

     据统计自1980年以来,至少有30台锅炉发生炉膛爆炸事故,以致水冷壁焊缝开裂,刚性梁弯曲变形,顶棚被掀起,烟道膨胀节开裂等设备损伤屡屡发生。究其原因:

     1)设计上缺乏可靠的灭火保护和可靠的联锁、报警、跳闸装置;

     2)炉膛刚性梁抗爆能力低;

     3)运行人员处理燃烧不稳或熄火时方法不对,错误采用“爆燃法”抢救,导致灭火爆炸;

     4)燃料质量下降、负荷调节失当、给粉装置及控制机构突然失灵等。

    (1)防止炉膛爆炸事故的操作措施。①一旦全炉灭火,应立即切断进入锅炉的全部燃料,包括给煤、给粉和点火用油、气等,即主燃料切断(MFT);②锅炉点火前必须通风,排除炉膛、烟风道及其他通道中的可燃物聚集。通风时必须将烟风挡板及调风器打开到一定的位置,风量应大于满负荷风量的25%,时间不少于5min,以保证换气量大于全部容积的5倍(德国TRD规定是3倍);③点火时要维持吹扫风量;一个燃烧器投运lOs内(不包括投煤及煤粉达到燃烧器所需的延滞时间)点不着,就应切断该燃烧器的燃烧。有一些锅炉不具备单个燃烧器自身点燃及火焰监视的条件,除了说明其保护功能的局限外,还应强调灭火保护及吹扫联锁的两个必要性,不可偏废。

    (2)确定合理的保护定值。为了避免爆炸,《火力发电厂设计技术规程》1994年版本已明确:“锅炉燃烧系统应设置炉膛火焰监视、炉膛灭火保护、炉膛压力保护和炉膛吹扫闭锁”,通过执行这条规定,大大控制了炉膛爆炸事故。当前不论火焰监视相关的熄火保护和黑炉膛保护,单就炉膛压力保护而言,动作值的确定并不规范。从原则上讲随炉膛结构强度的提高以及燃烧方式的变化,定值不应相同。实际测量表明,正常情况下一旦锅炉灭火,炉膛负压先增大(即负值增大),而后由于吸风自动调节的作用以及煤粉爆燃而炉膛负压反正,所以炉膛负压保护对于火焰熄灭时迅速切断进入炉膛的燃料,从而减少爆炸威力有先期制止的作用。《电力锅炉监察规程修订说明》写明:“炉膛压力保护报警值视炉膛安全监控系统的功能而异,平衡通风锅炉炉膛压力报警值一般可取±0.4kPa;动作值应避开炉膛压力的正常波动(如吹灰、投停燃烧器及一些小的坍焦等),当然远低于炉膛抗爆强度,以保证保护动作后炉膛压力继续升高时,炉膛各部分不发生永久变形”。“动作值应通过试验确定,作为试运行阶段的初始值,动作值可取+1.5kPa和-0.75kPa。”过高的值也许可以防止误动,但冒拒动或保护动作过迟的风险似乎没有必要。

    (3)安装炉膛安全保护装置。使用气体燃烧的锅炉要执行GB6222《工业企业煤气安全规程》的规定,防止可燃气体在炉膛内聚集、爆炸。

   2、制粉系统煤粉爆炸预防

      正常运行中制粉系统中的煤粉浓度在较大的范围内波动,制粉系统中具备爆炸浓度条件几乎不可避免。预防制粉系统煤粉爆炸要从防止点火源(如积粉自燃)、提高结构抗爆强度、加设爆炸卸压装置和惰性化处理。

     (1)防止点火源自燃。其主要指防止积粉自燃,如煤粉仓壁的平滑,风粉管道及挡板的布置要避免煤粉聚集,运行中控制风粉温度及检修前放粉等多方面采取措施。

     (2)提高煤粉仓及制粉系统的结构强度。虽然制粉系统防爆反事故措施的基点是防止爆炸,但从防爆门爆破的发生率看,制粉系统的爆炸实际上没有根绝。要避免事故扩大,当前结构强度的问题应引起各方面的重视。前面提到的煤粉仓掀顶事故,就是结构强度不足的结果。粉仓项是由9块厚6cm的水泥预制板加2~4cm水泥抹面(并无钢筋、螺栓固定)组成,计算表明2kPa的压力即可掀顶,而粉仓防爆门的爆破压力却为lOkPa,足见其结构强度严重不足。苏联防爆规程规定装防爆门的制粉系统的部件计算压力为150kPa,而美国防爆规程规定,除制粉系统启动、运行中均匀充满惰性气体的情况外,制粉系统的设计压力应大于344kPa,按NFPA68“爆炸排放指南”所规定的原则设爆炸排放口的不在比例,作为电站锅炉检验人员应注意制粉系统入孔门螺栓的完整以及煤粉管道法兰或抱箍的连接强度。

     (3)保持防爆门的防爆功能。试验表明容器中可燃粉尘点燃引爆后,防爆门动作压力、卸压面积,可燃粉尘特性值与爆后实际压力值有关。防爆门排气管的长度也与卸压能力有关。有的资料甚至断定,当容器的抗爆强度小于0.1MPa时,有长排气管的防爆门已不能达到防止容器损坏的目的。因此必须按设计要求布置足量的防爆门,并控制防爆门的卸压动作压力。此外,多数磨煤机防爆门与排粉机出口风箱防爆门位于零米层上部,一旦动作后从排放口喷出的火焰极易烧损附近的电缆,应注意防范。

(4)制粉系统惰性化。在制粉系统中惰性气体及水蒸汽的存在,会减少混合物的爆炸危险性。苏联防爆规程说明,在各种工况下,制粉系统中氧的容积份额小于16%,则不发生煤粉爆炸。有的资料提出用氮惰化空气煤粉混合物时的含最高允许氧量为14%,事实上用炉烟干燥的制粉系统较少发生爆炸,而引进的中速磨制粉系统虽不设防爆门,除在设计上提高设计抗爆强度外,还在磨煤机上装设了通入惰性气体(一般为氮气)的管接,并规定,制粉系统带负荷跳闸时,应通惰性气体,一直到磨煤机温度低于66℃或将剩煤排空为止。

三、  锅炉承压部件损伤造成的事故

      锅炉承压部件的爆裂是电站锅炉强迫停用的主要原因。据统计,占电站锅炉停用次数的82%,强迫停用时间的78%。因而预防锅炉承压部件损坏,有其明显的经济效益。下面将介绍锅炉承压部件因各种原因,使管壁不能承受内压应力而发生的爆裂。通常是指管壁的局部应力超过材料的屈服极限、持久强度,包括管壁磨损、腐蚀、侵蚀减薄使应力升高的因素,也包括管壁温度升高材料组织发生变化而使材料强度下降的因素,以及附加应力或交变应力的存在使管壁爆漏等。